SE-703 MANUAL

EARTH-LEAKAGE MONITOR

REVISION 12-B-092117

Copyright © 2017 by Littelfuse Startco
All rights reserved.
TABLE OF CONTENTS

SECTION PAGE
1 General ..1
2 Operation ..1
 2.1 Configuration-Switch Settings1
 2.1.1 Relay Operating Mode1
 2.1.2 Filter Selection1
 2.2 Front-Panel Controls ..1
 2.2.1 Earth-Leakage Trip Level1
 2.2.2 Earth-Leakage Trip Time1
 2.2.3 Reset ...1
 2.2.4 Test ...1
 2.3 Front-Panel Indication1
 2.3.1 Power ..1
 2.3.2 Trip ...1
 2.3.3 CT Verification1
 2.4 Analog Output ...5
 2.5 Self Diagnostics ...5
3 Installation ...5
4 Technical Specifications13
5 Ordering Information ..15
6 Warranty ...15
7 Earth-Fault Performance Test15
Appendix A SE-703 Revision History17

LIST OF FIGURES

FIGURE PAGE
1A SE-703-0X-00 Outline and Mounting Details2
1B SE-703-0X-02 Outline and Mounting Details3
1C SE-703-0X Outline and Mounting Details4
2 Typical Connection Diagrams5
3 Typical Three-Phase Starter Connection6
4 EFCT-1 Outline and Mounting Details7
5 EFCT-2 Outline and Mounting Details8
6 EFCT-26 Outline and Mounting Details9
7 PMA-55 Panel-Mount Adapter10
8 PMA-60 Panel-Mount Adapter11
9 PGA-0500 Analog Percent Current Meter12
10 TRIP Relays Maximum Switching Capacity12
11 Earth-Fault-Test Circuit16

LIST OF TABLES

TABLE PAGE
1 Earth-Fault-Test Record16

DISCLAIMER

Specifications are subject to change without notice. Littelfuse Startco is not liable for contingent or consequential damages, or for expenses sustained as a result of incorrect application, incorrect adjustment, or a malfunction.
This page intentionally left blank
1. GENERAL

The SE-703 is a microprocessor-based earth-leakage monitor for ac power supply systems incorporating earth-fault current limitation. The SE-703 has two isolated Form-C relays for use in independent control circuits. Additional features include LED trip and power indication, latching trips with front-panel and remote reset, trip memory, test button, selfiagnostics, 0 to 5-V analog output, CT verification with LED indication, digital selector switches, and switch-selectable algorithms for fixed-frequency or variable-frequency applications.

Earth-leakage current is sensed by an EFCT-series core-balance earth-fault current transformer (CT). The trip level of the earth-leakage circuit is digital-switch selectable from 25 to 500 mA. Trip time is digital-switch selectable from INST (instantaneous) to 500 ms.

Ordering option SE-703-0x-00 is AS/NZS 2081:2011 compliant. Its output relays operate in the fail-safe mode for undervoltage applications.

Ordering option SE-703-0x-02 is AS/NZS 2081:2002 compliant. Its output relays operate in the fail-safe or non-fail-safe mode for undervoltage or shunt-trip applications.

2. OPERATION

2.1 CONFIGURATION-SWITCH SETTINGS

See Figs. 1A, 1B and 1C.

2.1.1 RELAY OPERATING MODE

The output relays for ordering option SE-703-0x-00 operate only in the fail-safe mode for undervoltage applications.

The output relays for ordering option SE-703-0x-02 operate in the fail-safe or non-fail-safe mode for undervoltage or shunt-trip applications.

Switch 1 is used to set the operating mode of the output relays (for SE-703-0x-02 only).

In the fail-safe mode, the output relays energize when the earth-leakage circuit is not tripped. Non-volatile memory retains the trip status of the SE-703. If tripped, and the supply voltage is cycled, the SE-703 will remain tripped, with the trip relay de-energized and the TRIP LED on, until reset.

In the non-fail-safe mode, the output relays energize when a ground-fault trip occurs. Trip status is not retained in non-volatile memory.

2.1.2 FILTER SELECTION

Switch 2 is used to select the filtering algorithm for a fixed-frequency (50/60 Hz) or variable-frequency application. The FIXED FREQUENCY setting uses a DFT filter that allows lower trip levels to be used by rejecting harmonics that can cause nuisance tripping.

The VARIABLE FREQUENCY setting uses a peak-detection algorithm with a wider bandwidth for fault detection in variable-frequency drive applications.

2.2 FRONT-PANEL CONTROLS

2.2.1 EARTH-LEAKAGE TRIP LEVEL

The LEVEL (mA) selector switch is used to set the earth-leakage trip level. For earth-leakage detection, the earth-leakage trip level must be substantially below the prospective earth-fault current. To avoid sympathetic tripping, the trip level must be above the charging current of the protected feeder.

2.2.2 EARTH-LEAKAGE TRIP TIME

The SE-703 has a definite-time trip characteristic. The TIME (ms) selector switch is used to set the earth-leakage trip time for coordination with upstream and downstream earth-fault devices. Coordination requires the same trip level for all earth-leakage devices in a system and the trip time to progressively increase upstream. The amount of equipment removed from the system will be a minimum if the first earth-leakage device to operate is the one immediately upstream from the fault.

2.2.3 RESET

A trip remains latched until the RESET button is pressed or the remote-reset terminals (6 and 7) are momentarily connected.

The reset circuit responds only to a momentary closure so that a jammed or shorted button will not prevent a trip. The front-panel RESET button is inoperative when the remote-reset terminals are connected.

2.2.4 TEST

The TEST button is used to test the earth-leakage circuit, the indication, and the output relays. When the TEST button is pressed for one second, a test signal is applied to the earth-leakage-detection circuit, the circuit will trip, the TRIP LED will light, and the output relays will operate.

2.3 FRONT-PANEL INDICATION

2.3.1 POWER

The green LED labelled PWR indicates presence of supply voltage.

2.3.2 TRIP

The red LED labelled TRIP indicates a trip. A solid red LED indicates an earth-leakage trip and a flashing LED indicates a trip initiated by a CT fault. Two fast flashes of the TRIP LED indicate a diagnostic trip. See Section 2.5.

2.3.3 CT VERIFICATION

The green LED labelled CT indicates that an EFCT-series sensor is connected.
FIGURE 1A. SE-703-0X-00 Outline and Mounting Details.

NOTES:

1. DIMENSIONS IN MILLIMETRES (INCHES).
2. MOUNTING SCREWS: M4 OR 8-32.
3. OVERALL DIMENSION WHEN MOUNTED ON DIN EN50022 35 mm x 75 mm TOPHAT RAIL.
4. ADJUSTMENT KNOBS ARE REMOVABLE.
5. CONFIGURATION SWITCHES SHOWN IN DEFAULT POSITION.
FIGURE 1B. SE-703-0X-02 Outline and Mounting Details.

NOTES:

1. DIMENSIONS IN MILLIMETRES (INCHES).

2. MOUNTING SCREWS: M4 OR 8-32.

3. OVERALL DIMENSION WHEN MOUNTED ON DIN EN50022 35 mm x 75 mm TOPHAT RAIL.

4. ADJUSTMENT KNOBS ARE REMOVABLE.

5. CONFIGURATION SWITCHES SHOWN IN DEFAULT POSITION.
FIGURE 1C. SE-703-0X Outline and Mounting Details.

NOTES:

1. DIMENSIONS IN MILLIMETRES (INCHES).

2. MOUNTING SCREWS: M4 OR 8-32.

3. OVERALL DIMENSION WHEN MOUNTED ON DIN EN50022 35 mm x 75 mm TOP HAT RAIL.

4. ADJUSTMENT KNOBS ARE REMOVABLE.

5. CONFIGURATION SWITCHES SHOWN IN DEFAULT POSITION.
2.4 ANALOG OUTPUT
The non-isolated, 0- to 5-V analog output indicates earth-leakage current sensed by the EFCT. The output is 5 V when earth-leakage current is 500 mA. Use a PGA-0500 Analog Percent Current Meter with the PGA-05CV Voltage Converter to indicate earth-leakage current. See Figs. 2, 3, and 9.

2.5 SELF DIAGNOSTICS
A diagnostic trip is indicated by two fast flashes of the TRIP LED. It can be caused by a problem detected by an incorrect reading from non-volatile memory. Press RESET or cycle supply voltage. If the problem persists, consult Littelfuse Startco.

3. INSTALLATION

NOTE: Mounting, terminal-block connections, and wiring must conform to applicable local electrical codes. Check all applicable codes prior to installation.

This earth-leakage monitoring system consists of an SE-703 Earth-Leakage Monitor and an EFCT-series current sensor connected as shown in Figs. 2 and 3.

An SE-703 can be surface or DIN-rail mounted. See Figs. 1A, 1B and 1C. Panel mounting requires a PMA-55 or PMA-60 Panel-Mount Adapter. See Figs. 7 and 8. A PMA-60 meets the AS/NZS 2081:2011 IP53 requirement and includes tamper-resistant security screws to prevent changes to the SE-703 front-panel settings.

Use terminal 11 (L1) as the line terminal on ac systems or the positive terminal on dc systems. Use terminal 10 (L2/N) as the neutral terminal on ac systems or the negative terminal on dc systems. Connect terminal 9 () to earth.

Pass the phase conductors through the EFCT window and position them in the centre of the opening—for 4-wire and single-phase systems, also pass the neutral conductor through the EFCT window, as shown in Figs. 2 and 3. Do not pass earth conductors through the EFCT window. In applications that require shields or drain wires to pass through the EFCT window, return them through the EFCT window before connecting them to earth. Connect the EFCT current sensor to terminals 4 and 5, connect the shield to terminal 5, and earth terminal 5. See Figs. 4, 5, and 6 for EFCT-series current-sensor dimensional drawings.

Remove the connection to terminal 9 for dielectric-strength testing.

![FIGURE 2. Typical Connection Diagrams.](image-url)
FIGURE 3. Typical Three-Phase Starter Connection.

NOTES:
1. RELAY CONTACTS SHOWN WITH SE-703 DE-ENERGIZED.
2. SE-703 SHOWN CONNECTED WITH A FAIL-SAFE OPERATING MODE.
3. TERMINALS 14/15 ARE INTERNALLY CONNECTED.
4. K2 CONTACT ONLY AVAILABLE ON SE-703-XX-0X MODELS.
NOTES:

1. DIMENSIONS IN MILLIMETRES (INCHES).
2. MOUNTING SCREWS; M4 OR 8-32.
3. PRESS MOUNTING FEET IN PLACE USING INSTALLATION TOOL PROVIDED.
4. RoHS COMPLIANT.
5. EN 60044-1 COMPLIANT.

FIGURE 4. EFCT-1 Outline and Mounting Details.
FIGURE 5. EFCT-2 Outline and Mounting Details.

NOTES:
1. DIMENSIONS IN MILLIMETRES (INCHES).
2. MOUNTING SCREWS: M5 OR 10-32.
3. RoHS COMPLIANT.
4. EN 60044-1 COMPLIANT.
FIGURE 6. EFCT-26 Outline and Mounting Details.

NOTES:
1. DIMENSIONS IN MILLIMETRES (INCHES).
2. MOUNTING SCREWS: M4 OR 8-32.
3. PRESS MOUNTING FEET IN PLACE USING INSTALLATION TOOL PROVIDED.
 (DETAIL 'A')
4. RoHS COMPLIANT.
5. EN 60044-1 COMPLIANT.
6. NOT ALL CERTIFICATIONS SHOWN.
FIGURE 7. PMA-55 Panel-Mount Adapter.

INSTALLATION INSTRUCTIONS:

1. REMOVE BEZEL AND LATCH MONITOR TO BRACKET.

2. INSERT BRACKET THROUGH FRONT OF PANEL CUTOUT AND SECURE WITH FLAT WASHERS AND LOCKNUTS PROVIDED.

3. CONNECT WIRING TO TERMINALS.

4. INSTALL BEZEL USING 6-32 x 0.31 SCREWS PROVIDED.

NOTE:

1. DIMENSIONS IN MILLIMETRES (INCHES).
FIGURE 8. PMA-60 Panel-Mount Adapter.

INSTALLATION INSTRUCTIONS:
1. WITH COVER REMOVED LATCH MONITOR TO BRACKET.
2. INSERT BRACKET THROUGH FRONT OF PANEL CUTOUT AND SECURE WITH FLAT WASHERS AND LOCKNUTS PROVIDED.
3. CONNECT WIRING TO TERMINALS.
4. ATTACH COVER USING SECURITY SCREWS OR THUMB SCREWS PROVIDED.

NOTES:
1. DIMENSIONS IN MILLIMETRES (INCHES).
2. MEETS NEMA3, IP53.
3. INCLUDES TWO TR20 TAMPER-RESISTANT TORX SCREWS (M4-0.7x16 mm, INSTALLED) AND TWO THUMB SCREWS. TAMPER-RESISTANT SCREWS MUST BE USED FOR AS/NZS 2081: 2011 COMPLIANCE.
FIGURE 9. PGA-0500 Analog Percent Current Meter.

FIGURE 10. TRIP Relays Maximum Switching Capacity.
4. TECHNICAL SPECIFICATIONS

Supply:
- **0U Option**: 5 VA, 120 to 240 Vac, (+20, -55%), 50/60 Hz,
 2 W, 100 to 240 Vdc, (+20, -25%)
- **0D Option**: 2 W, 12 to 30 Vdc, (+20, -25%)
- **0T Option**: 2 W, 40 to 55 Vdc, (+20, -25%)
- **03 Option**: 2.5 VA, 24 Vac, (+15%, -40%), 50/60 Hz

Trip-Level Settings: 25, 30, 45, 60, 80, 110, 150, 200, 300, and 500 mA

Trip-Time Settings: INST, 100, 150, 200, 250, 300, 350, 400, 450, and 500 ms

Accuracies:
- **Trip Level**: 10% of setting
- **Trip Time**: +0, -20% of setting

Discrimination Time: ≥ 75% of trip time setting, Minimum off time 25 ms

Input:
- Algorithms: DFT Digital or Peak
- **DFT 3 dB**
 Frequency Resp: 32 to 86 Hz
 Peak 3 dB
 Frequency Resp: 20 to 420 Hz
- **CT**: EFCT Series

Thermal Withstand:
- Continuous: 25 A Earth-Fault Current
- 1-Second: 400 A Earth-Fault Current

Analog Output:
- Range: 0 to 5 V, 10 mV per mA
- Output Impedance: 220 Ω

Reset: Front-Panel Button and Remote, N.O. Contact

Functional Test: Front-Panel Button

Output Relay 1 and Relay 2:
- **Contact Configuration**
 - SE-703-0x: Relay 1 only, Isolated N.O. and N.C.
 - SE-703-0x-00, SE-703-0x-02: N.O. and N.C. (Form-C), Isolated

Operating Mode:
- SE-703-0x: Fail-Safe
- SE-703-0x-00: Fail-Safe
- SE-703-0x-02: Fail-Safe or Non-Fail-Safe

CSA/UL Contact Rating:
- 8 A General Use, 250 Vac, 8 A Resistive, 30 Vdc 0.25 HP, 120/240 Vac

Supplemental Contact Ratings:
- Carry Current: 8 A, maximum
- Break:
 - 30 Vdc: 240 W Resistive, 170 W Inductive (L/R = 7 ms)
 - 120 Vdc: 24 W Resistive, 17 W Inductive (L/R = 7 ms)
 - ac: 2,000 VA Resistive, 875 VA Inductive (PF = 0.4)

Subject to maximums of 8 A and 250 Vac/30 Vdc or 200 mA at 120 Vdc

Trip Mode: Latching

Terminals: Wire Clamping, 24 to 12 AWG (0.2 to 2.5 mm²) conductors

Tightening Torque: 0.40 N·m (3.54 lbf·in)

Dimensions:
- Height: 75 mm (3.0”)
- Width: 55 mm (2.2”)
- Depth: 113 mm (4.5”)

Shipping Weight: 0.45 kg (1 lb)

Environment:
- Operating Temperature:
 - ≤ 1,000 m (3,281’) ... 40 to 60°C
 - 3,000 m (9,843’) ... 40 to 55°C
 - 5,000 m (16,404’) ... 40 to 50°C
- Storage Temperature: -55 to 80°C (-67 to 160°F)
Humidity 93% Non-Condensing
Altitude 5,000 m (16,404') maximum
Overvoltage Category II
Pollution Degree 2
Enclosure Rating IP20

PWB Conformal Coating MIL-1-46058 qualified
 UL QMJU2 recognized
Surge Withstand ANSI/IEEE 37.90.1-1989
 (Oscillatory and Fast Transient)
Vibration EN60255-21-1 (Vibration, Shock, and Seismic)
 EN60255-21-2 (Shock and Bump)

EMC Tests:
Verification tested in accordance with IEC 60255-26:2013
Radiated and Conducted
Emissions CISPR 11:2009,
 CISPR 22:2008,
 EN55022:2010
 Class A
Current Harmonics and Voltage Fluctuation IEC 61000-3-2 and
 IEC 61000-3-3
 Class A
Electrostatic Discharge IEC 61000-4-2
 ± 6 kV contact discharge
 (direct and indirect)
 ± 8 kV air discharge
Radiated RF Immunity IEC 61000-4-3
 10 V/m, 80-1000 MHz,
 80% AM (1 kHz)
 10 V/m, 900 MHz,
 200 Hz pulse modulated
Fast Transient IEC 61000-4-4
 ±4 kV on AC mains and
 I/O lines
Surge Immunity IEC 61000-4-5
 Zone B
 ± 1 kV differential mode
 ± 2 kV common mode
Conducted RF Immunity IEC 61000-4-6
 10 V, 0.15-80 MHz,
 80% AM (1 kHz)

Magnetic Field Immunity IEC 61000-4-8
 50 Hz and 60 Hz, 30 A/m and
 300 A/m
Voltage Interruption IEC 61000-4-11,
 IEC 61000-4-29,
 0% for 5, 10, 20, 50,
 100 & 200 ms 3x each
Power Frequency IEC 61000-4-16
 Zone A: differential mode
 150 Vrms
 Zone A: common mode
 300 Vrms
1 MHz Burst IEC 61000-4-18
 ± 1 kV differential mode
 (line-to-line)
 ± 2.5 kV common mode
RFI Compliance FCC Part 15, Subpart B,
 Class A – Unintentional Radiators
Compliance:
Option SE-703-0x AS/NZS 2081:2011
Option SE-703-0x-00 AS/NZS 2081:2011
Option SE-703-0x-02 AS/NZS 2081:2002
Certification CSA, Canada and USA

CSA C22.2 No.14 Industrial Control Equipment
UL 508 Industrial Control Equipment
UL 1053 Ground Fault Sensing and Relaying Equipment
Australia, Regulatory Compliance Mark (RCM)
CE Low Voltage Directive
FCC CFR47, Part 15, Subpart B,
Class A – Unintentional Radiators

NOTES:
(1) At 50 or 60 Hz.
(2) Maximum lead resistance of 2 Ω.
(3) Trip Time at 1.5 x trip-level setting.
5. ORDERING INFORMATION

Options:
0 – AS/NZS 2081:2011
(Fail-Safe Mode)
2 – AS/NZS 2081:2002
(Fail-Safe and Non-Fail-Safe Modes)

Supply:
3 – 24-Vac Supply
U – Universal 120/240-Vac/Vdc Supply
D – 12/24-Vdc Supply
T – 48-Vdc Supply

EFCT-1 Earth-Fault Current Sensor, 82 mm (3.2") window
EFCT-2 Earth-Fault Current Sensor, with Flux Conditioner 139 mm (5.5") window
EFCT-26 Earth-Fault Current Sensor, 26 mm (1.0") window
EFCT-1FC Flux Conditioner, 70 mm (2.7") window

PGA-0500 Analog Percent Current Meter (PGA-05CV Included)
PMA-55 Panel-Mount Adapter, NEMA 1
PMA-60 Panel-Mount Adapter, NEMA 3, IP53.
Includes two TR20 tamper-resistant Torx screws(1) and two thumb screws.

AC700-HW-00 TR20 tamper-resistant Torx, 0.25" insert bit
AC700-HW-01 TR20 tamper-resistant Torx driver

PMA-3 ... Adapter Plate, GEC/MCGG
PMA-6 ... Adapter Plate, FPL-GFRM
PMA-15 Adapter Plate, MGFR
Consult factory for custom mounting adapters.

Startco Pty. Australian Current Sensors
EFCT-5RF Earth-Fault Current Sensor, 60 mm (2.4") window
EFCT-6RF Earth-Fault Current Sensor, 85 mm (3.3") window
EFCT-7RF Earth-Fault Current Sensor, 112 mm (4.4") window
EFCT-8RF Earth-Fault Current Sensor, 140 mm (5.5") window
EFCT-9RF Earth-Fault Current Sensor, 160 mm (6.3") window
EFCT-10RF Earth-Fault Current Sensor, 200 mm (7.9") window

For additional information and to order EFCT-XRF sensors, contact sales@startco.com.au.

NOTES:

(1) Tamper-resistant screws must be used for AS/NZS 2081:2011 compliance.

6. WARRANTY

The SE-703 Earth-Leakage Monitor is warranted to be free from defects in material and workmanship for a period of five years from the date of purchase.

Littelfuse Startco will (at Littelfuse Startco’s option) repair, replace, or refund the original purchase price of an SE-703 that is determined by Littelfuse Startco to be defective if it is returned to the factory, freight prepaid, within the warranty period. This warranty does not apply to repairs required as a result of misuse, negligence, an accident, improper installation, tampering, or insufficient care. Littelfuse Startco does not warrant products repaired or modified by non-Littelfuse Startco personnel.

7. EARTH-FAULT PERFORMANCE TEST

Some jurisdictions require periodic earth-fault performance tests. A test-record form is provided for recording the date and the results of the performance tests. The following earth-fault system tests are to be conducted by qualified personnel:

a) Evaluate the interconnected system in accordance with the overall equipment manufacturer’s detailed instructions.

b) Verify proper location of the earth-fault current sensor. Ensure the cables pass through the earth-fault-current-sensor window. This check can be done visually with knowledge of the circuit. The connection of the current-sensor secondary to the SE-703 is not polarity sensitive.

c) Verify that the system is correctly earthed and that alternate earth paths do not exist that bypass the current sensor. High-voltage testers and resistance bridges can be used to determine the existence of alternate earth paths.

d) Verify proper reaction of the circuit-interrupting device in response to a simulated or controlled earth-fault current. To simulate earth-fault current, use CT-primary current injection. Fig. 11 shows a test circuit using an SE-400 Ground-Fault-Relay Test Unit. The SE-400 has a programmable output of 0.5 to 9.9 A for a duration of 0.1 to 9.9 seconds.

Fig. 11 shows the use of resistors that reduce the injected current to 10% of the SE-400 setting. Set the test current to 120% of the SE-703 setting. Inject the test current through the current-sensor window for at least 2.5 seconds. Verify that the circuit under test has reacted properly. Correct any problems and re-test until the proper reaction is verified.
e) Record the date and the results of the test on the attached test-record form.

NOTE: Do not inject test current directly into CT-input terminals 4 and 5.

![FIGURE 11. Earth-Fault-Test Circuit.](image)

<table>
<thead>
<tr>
<th>DATE</th>
<th>TEST RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Retain this record for the authority having jurisdiction.
APPENDIX A
SE-703 REVISION HISTORY

<table>
<thead>
<tr>
<th>MANUAL RELEASE DATE</th>
<th>MANUAL REVISION</th>
<th>PRODUCT REVISION (REVISION NUMBER ON PRODUCT LABEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 21, 2017</td>
<td>12-B-092117</td>
<td>08</td>
</tr>
<tr>
<td>March 10, 2017</td>
<td>12-A-031017</td>
<td></td>
</tr>
<tr>
<td>March 10, 2016</td>
<td>11-C-031016</td>
<td></td>
</tr>
<tr>
<td>August 28, 2014</td>
<td>11-B-082814</td>
<td>07</td>
</tr>
<tr>
<td>April 21, 2014</td>
<td>11-A-042114</td>
<td></td>
</tr>
<tr>
<td>April 23, 2013</td>
<td>10-A-042313</td>
<td>06</td>
</tr>
</tbody>
</table>

MANUAL REVISION HISTORY

REVISION 12-B-092117
SECTION 4
Updated certification information.
SECTION 5

REVISION 12-A-031017
SECTION 2
Added Figs. 1A, 1B and 1C.
SECTION 3
Updated Figs. 2 and 3.
Added Fig. 10.
SECTION 4
Added ordering option details.
SECTION 5
Added ordering options.
SECTION 7
Added Fig. 11.

REVISION 11-C-031016
SECTION 5
Terminal torque specification added.
RCM certification added.

REVISION 11-B-082814
SECTION 3
EFCT-x figures updated.
SECTION 4
EMC Test specifications updated.

REVISION 11-A-042114
AS/NZS 2081:2011 compliance added.
Section 4 removed.
SECTION 3
Figs. 2, 3, 4, 5, 6, and 9 updated.
SECTION 4
Update to include altitude and vibration specifications.
FCC certification added.
SECTION 5
Ordering information updated.
SECTION 7
Fig. 10 updated.

REVISION 10-A-042313
SECTION 3
Figs. 2 and 3 updated to include PGA-05CV.
SECTION 5
Environment section updated to include Fahrenheit temperature range.

APPENDIX A
Revision history added.

PRODUCT REVISION HISTORY

REVISION 08
Firmware: Trip levels updated for compliance with AS/NZS 2081:2011 (ordering option SE-703-0x-00) and AS/NZS 2081:2002 (ordering option SE-703-0x-02).
Hardware: Added two Form-C relays. RoHS2 compliance.

REVISION 07
Firmware: Trip levels updated for compliance with AS/NZS 2081:2011.
Hardware: Full conformal coating on all PCB’s.

REVISION 06
Firmware: Improved operation of front-panel test button.